

Golden Research Thoughts

FUZZY IDEALS IN Γ-NEAR-SUBTRACTION SEMIGROUPS

Dr. Alandkar Sanjay Jaykumar

Head and Associate Professor, Department of Mathematics and Statistics. Walchand College of Arts and Science, Solapur [M.S.]

ABSTRACT

In this paper, we introduce a concept of fuzzy ideals in Γ near-subtraction semigroups and discuss some of its properties.

KEY WORDS: Γ - near subtraction semigroup, Ideals of Γ - near subtraction semigroup, fuzzy level set, fuzzy ideal, fuzzy homomorphism.

I. INTRODUCTION

B. M. Schein [10] introduced the system (N, \circ , -.), where N is a set of functions closed under the composition " \circ " of functions (and hence (N, \circ) is a function semigroup) and the set theoretic subtraction '-' (and so (N, -) is a subtraction algebra in the sense of [1]). B. Zelinks[13] studied subtraction semigroup. In [3, 4], Y. B. Jun and H. S. Kim discussed the ideals of a set and its related results. Pilz[8] has developed near-ring theory. Dheena at el. [2] defined the near subtraction semigroups . A graded membership of set is newly introduced by L. A. Zadeh [11].

Y. S. Pawar at el [7] discussed ideals and its properties , H. V. Kumbhojkar at el [5] studied correspondences of fuzzy ideals. K.J. Lee and C.H. Park[6] introduced the notion of a fuzzy ideal in subtraction algebras, and give some conditions for a fuzzy set to be a fuzzy ideal in subtraction algebras. Satyanarayan [9] defined the concept of Γ - near ring and their ideals. D. R. Prince Williams[11] studied Fuzzy ideals in near-subtraction semigroup. S. J. Alandkar[1] generalize the concept of near subtraction semigroups and introduce the concept of Γ -near subtraction semigroup[1] and studied its properties. In this paper, we fuzzificate the concept of Γ -near subtraction semigroup[1] and study its properties.

II. PRELIMINARIES

We recalled the following definitions and its properties : **Definition 2.1.** Let A be a nonempty set and subtraction '-' is a single binary operation. Then an algebra is said to be a subtraction algebra (A, -) if it satisfies the following axioms: for any a, b, c \in A,

(i) a - (b - a) = a;

(ii) a - (a - b) = b - (b - a);

(iii) (a - b) - c = (a - c) - b.

In (iii) omition of parentheses in expressions of the form (x - y) – z is allowed.

In a subtraction algebra, the following properties are satisfied:

Definition 2.3. A subtraction semigroup is an

algebra $(A, \cdot, -)$ with two binary operations '-'and '.'that satisfies the following properties: for any a, b, c $\in A$,

P4. (a-b)-(b-a)=a-b where a-a=0 where element a does not depend on the choice of $a \in A$. **Definition 2.2.** A non empty subset S of a

subtraction algebra N is said to be a subalgebra of

1. (A, .) is a semigroup,

P1. a - 0 = a and 0 - a = 0.

P3. (a - b) - b = (a - b).

P2. a - (a - b) = 0.

2. (A, -) is a subtraction algebra,

N, if $a - b \in S$ whenever $a, b \in S$.

3. a(b - c) = ab -ac and (a - b)c = ac - bc.

A subtraction semigroup is said to be multiplicatively abelian if multiplication is commutative.

Definition 2.4. A non-empty set N together with the binary operations "–" and "." is said to be a near-subtraction semigroup if it satisfies the following:

1. (N, -) is a subtraction algebra.

- 2. (N, .) is a semigroup.
- 3. (a b)c = ac bc, for all $a, b, c \in N$.

It is clear that 0a = 0, for all $a \in N$. Similarly we can define a near-subtraction semigroup (left).

We always take a near-subtraction semigroup means it is a near-subtraction semigroup(right) only.

Definition 2.5. Let (N, -) be a near-subtraction semigroup and $\Gamma = \{ \alpha, \beta, .. \}$ be a nonempty set of operators. Then N is said to be a Γ -near subtraction semigroup, if there exists a mapping N $\times \Gamma \times N \rightarrow N$ (the image of (a, α, b) is denoted by a α b), satisfying the following conditions:

1. (N, α) is a semigroup, $\alpha \in \Gamma$

2. (N, -) is a subtraction algebra,

3. $(a - b)\alpha c = a\alpha c - b\alpha c$ (right distributive law),

4. $(\alpha \alpha b)\beta c = \alpha \alpha (b\beta c)$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.

Definition 2.5. Let (N, -) be a near-subtraction semigroup and $\Gamma = \{\alpha, \beta, ...\}$ be a nonempty set of operators. Then N is said to be a Γ -near subtraction semigroup, if there exists a mapping N $\times \Gamma \times N \rightarrow N$ (the image of (a, α, b) is denoted by aab), satisfying the following conditions:

FUZZY IDEALS IN Γ-NEAR-SUBTRACTION SEMIGROUPS

- 1. (N, α) is a semigroup, $\alpha \in \Gamma$
- 2. (N,) is a subtraction algebra,
- 3. $(a b)\alpha c = a\alpha c b\alpha c$ (right distributive law),
- 4. $(\alpha\alpha b)\beta c = \alpha\alpha(b\beta c)$ for all $\alpha, b, c \in M$ and $\alpha, \beta \in \Gamma$.

In practice we called simply ' Γ -near subtraction semigroup' instead of 'right Γ -near subtraction semigroup'. Similarly we can define a Γ -near subtraction semigroup (left). It is clear that $0\alpha a = 0$, for all $a \in N$ and $\alpha \in \Gamma$. **Example 2.6.** Let $N = \{0, 1, 2, 3, 4, 5\}$ in which '-' and $\alpha \in \Gamma$ are defined by

-	0	1	2	3	4	5			
0	0	0	0	0	0	0			
1	1	0	3	4	3	1			
2	2	5	0	2	5	4			
3	3	0	3	0	3	3			
4	4	0	0	4	0	4			
5	5	5	0	5	5	0			
А	0	1	2	3	4	5			
0	0	0	0	0	0	0			
1	0	1	4	3	4	0			
2	0	4	2	0	4	5			
3	0	3	0	3	0	0			
4	0	4	4	0	4	5			
5	0	0	5	0	0	5			
β	0	1	2	3	4	5			
0	•	<u>^</u>	0		^				

β	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	4	3	4	0
2	0	4	2	0	4	5
3	0	3	0	3	0	0
4	0	4	4	0	4	5
5	0	0	5	0	0	5

It is easily verified that N is a Γ -near subtraction semigroup.

Notations : In this paper, N denotes, unless otherwise stated, a Γ -near-subtraction semigroup. Here we consider the following notations

1. N* denotes the set of all non-zero elements of N. That is $N* = N - \{0\}$.

2. N0 = {a $\in N/a\alpha 0 = 0$ } is called the zero symmetric part of N. N is called zero symmetric if N = N0.

3. Nd = { $n \in X/n\alpha(a - a') = n\alpha a - n\alpha a'$ for all $a, a' \in N$ } - the set of all distributive elements of N. N is called distributive if N = Nd.

4. The centre of N is defined as $C(N) = \{a \in N | a\alpha k = k\alpha a \text{ for all } k \in N \}.$

5. T denotes the set of all idempotent elements of T (t \in T if and only if $t^2 = t$).

6. V denotes the set of all nilpotent elements of N (a \in V if and only if $a^k = 0$ for some positive integer k).

In a right Γ - near subtraction semigroup N, $0\alpha = 0$ for all $a \in N$. But $a\alpha 0$ need not be equal to 0, for $a \in N$. Accordingly, we define the following:

Definition 2.7. (i) The set $\{a \in N/a\alpha 0 = 0\}$ is called the zero-symmetric part of N and is denoted by N0.

(ii) A right Γ - near subtraction semigroup N is said to be zero symmetric if N = N0.

Example 2.6. verifies that $(N, -, \alpha)$ for $\alpha \in \Gamma$ is a zero symmetric right Γ - near subtraction semigroup i.e., N = N0. Now we introduce the ideals of Γ -near subtraction semigroup.

Definition 2.8. Let $(N, -, \alpha)$ for $\alpha \in \Gamma$ be a Γ -near subtraction semigroup. A non empty subset I of N is called

(i) a left ideal if I is a subalgebra of (N, -) and $a\alpha i - a\alpha(a' - i) \in I$ for all $a, a' \in N$ and $i \in I$

(ii) a right ideal if I is a subalgebra of (N, -) and $I\Gamma N \subseteq I$

(iii) an ideal if I is both a left ideal and a right ideal.

Here in Example 2.4, $I = \{0, 1, 2, 3, 4\}$ is an ideal of N.

Remark 2.9. (i) Suppose N is a zero symmetric Γ -near subtraction semigroup and I is a left ideal of N such that a –b for every a, b \in N Then the following are equivalent:

(i) NΓI ⊆ I

(ii) $a\alpha i - a\alpha(a' - i) \in I$ for all $a, a' \in N, \alpha \in \Gamma$ and $i \in I$.

FUZZY IDEALS IN F-NEAR-SUBTRACTION SEMIGROUPS Definition 2.10. A mapping $\mu : N \rightarrow [0, 1]$ is called **fuzzy set** of N.

Definition 2.11. The **complement** of a fuzzy set μ , denoted by $\bar{\mu}$ is the fuzzy set in N given by $\bar{\mu}(a) = 1 - \mu(a)$ for all $a \in N$.

Definition 2.12. The level set of a fuzzy set μ of N is defined as $\mu_t^{\geq}(a) = \{a \in N | \mu(a) \ge t\}$, for all $0 \le t \le 1$. Throughout this paper N denote a Γ -near-subtraction semigroup unless otherwise specified.

III. FUZZY IDEALS OF A Γ-NEAR-SUBTRACTION SEMIGROUP

Definition 3.1: A fuzzy set μ in N is called a fuzzy ideal of N if it satisfies the following conditions:

(GFI1) $\mu(a - b) \ge \min{\{\mu(a), \mu(b)\}}$ for all $a, b \in N$,

(GFI2) $\mu(a\alpha x - a\alpha(b - x)) \ge \mu(x)$ for all $a, b, x \in N, \alpha \in \Gamma$ and

(GFI3) $\mu(a\alpha b) \ge \mu(a)$, for all $a, b \in \mathbb{N}, \alpha \in \Gamma$.

Note that μ is a fuzzy left ideal of N if it satisfies(GFI1)and(GFI2), and μ is a fuzzy right ideal of N if it satisfies (GFI1) and (GFI3).

Example 3.2. Using Example 2.4, For $\alpha \in \Gamma$, $(N, -, \alpha)$ is a Γ -near-subtraction semigroup and $I = \{0, 1, 2, 3, 4\}$. Let μ be a fuzzy set on N defined by $\mu(0) = 0.8$, $\mu(a) = 0.5$ for all $a \in I$ and $\mu(5) = 0.3$. Then it can be easily verified that μ is a fuzzy ideal of N.

Theorem 3.3: Let μ be a fuzzy left (resp. right) of N.Then the set $N\mu = \{a \in N | \mu(a) = \mu(0)\}$ is a left(resp.right) ideal of N.

Proof: Suppose μ is a fuzzy left ideal of N and let $a, b \in N\mu$. Then $\mu(a - b) \ge \min\{\mu(a), \mu(b)\} = \mu(0)$. Thus $a - b \in N\mu$. For every $a, b \in N$, $\alpha \in \Gamma$ and $x \in N\mu$, we have $\mu(a\alpha x - a\alpha(b - x)) \ge \mu(x) = \mu(0)$. Thus $a\alpha x - a\alpha(b - x) \in N\mu$. Hence, N μ is a left ideal of N.

For every $a, b \in N$, $\alpha \in \Gamma$ and $x \in$, we have $\mu(a\alpha b)) \ge \mu(a) = \mu(0)$. Thus $a\alpha b \in N\mu$. Hence, $N\mu$ is a right ideal of N. Thus $N\mu$ is an ideal of N.

Theorem 3.4: Let A be a non-empty subset of N and μ_A be a fuzzy set in N defined by

 $\mu_A(\mathbf{a}) = \begin{cases} s, & \text{if } \mathbf{a} \in \mathbf{A} \\ t, & otherwise \end{cases} \text{ for all } \mathbf{a} \in \mathbf{N} \text{ and } s, t \in [0, 1] \text{ with } s > t. \end{cases}$

Then μ_A is a fuzzy ideal of N if and only if A is an ideal of N. Moreover $N_{\mu_A} = A$.

Proof: Suppose μ_A is a fuzzy ideal of N. Let a, $b \in A$.

Then $\mu(a - b) \ge \min{\{\mu(a), \mu(b)\}} = s$. Thus, $a - b \in A$.

For every a, $b \in N$, $\alpha \in \Gamma$ and $x \in A$, we have $\mu(a\alpha x - a\alpha(b - x)) \ge \mu(x) = s$ Thus $a\alpha x - a\alpha(b - x) \in A$.

For all $a, b \in A$, $\alpha \in \Gamma$. Then $\mu(a\alpha b) \ge \mu(a) = s$. Thus, $a\alpha b \in A$. Hence, μ_A is an ideal of X.

Conversely, assume that A is an ideal of N. Let x, $y \in N$. If at least one of N and y does not belong to A,then μ_A $(x - y) \ge t = \min{\{\mu_A(x), \mu_A(y)\}}$.

If a, b \in A then a – b \in A, we have $\mu_A(a - b) \ge s = \min{\{\mu_A(a), \mu_A(b)\}}$.

Let a, b, $x \in N$, $\alpha \in \Gamma$ and if $x \in A$ such that $a\alpha x - a\alpha(b-x) \in A$, we have $\mu_A(a\alpha x - a\alpha(b-x)) \ge s = \mu_A(x)$.

If $x \notin A$ such that $a\alpha x - a\alpha(b - x) \notin A$, we have $\mu_A (a\alpha x - a\alpha(b - x)) \ge t = \mu_A(x)$.

For all $a, b \in A$, $\alpha \in \Gamma$ then $a\alpha b \in A$, we have $\mu_A(a\alpha b) \ge s = \mu(a)$.

Suppose $a \notin A$ we have $\mu_A(a\alpha b) \ge t = \mu(a)$.

Hence μ_A is a fuzzy ideal of N. Also $N_{\mu_A} = \{x \in N | \mu_A(x) = \mu_A(0)\} = \{x \in N | \mu_A(x) = s\} = \{x \in N | x \in A\} = A$.

Corollary 3.5: Let χ_A be the characteristic function of a subset $A \subseteq N$. Then χ_A is a fuzzy left(resp. right) ideal if and only if A is a left(resp. right) ideal.

Theorem 3.6: Let μ be a fuzzy subset of N. Then μ is a fuzzy ideal of N if and only if each non-empty level subset μ_t^{\geq} of μ is an ideal of N.

Proof: Assume that μ is a fuzzy ideal of N and μ_t^{\geq} is a non-empty level subset of N.

(i) Since μ_t^{\geq} is a non-empty level subset of μ , there exists $a, b \in \mu_t^{\geq}$, $\mu(a-b) \geq \min\{\mu(a), \mu(b)\} = t$. Thus $a-b \in \mu_t^{\geq}$.

(ii) Let a, b, $x \in \mu_t^{\geq}$, $\alpha \in \Gamma$, we have $\mu(a\alpha x - a\alpha(b-x)) \ge \mu(x) \ge t$. Thus $a\alpha x - a\alpha(b-x) \in \mu_t^{\geq}$.

(iii) Let a, b $\in \mu_t^{\geq}$, such that $\mu(a\alpha b) \geq \mu(a) \geq t$. Thus $a\alpha b \in \mu_t^{\geq}$. Hence, μ_t^{\geq} is an ideal of N.

Conversely, suppose that μ_t^{\geq} is an ideal of N.

(i)Let if possible, $\mu(a_0 - b_0) < \min\{\mu(a_0), \mu(b_0)\}$, for some $a_0, b_0 \in \mu_t^{\geq}$, then by taking

 $t_0 = (1/2) \{ \mu(a_0 - b_0) + \min\{\mu(a_0), \mu(b_0)\} \},\$

we have $\mu(a_0 - b_0) > t_0$, for $\mu(a_0) \ge t_0$, $\mu(b_0) \ge t_0$. Thus $a_0 - b_0 \notin \mu_t^{\ge}$, for some $a_0, b_0 \in \mu_t^{\ge}$. This is a contradiction, and so $\mu(a-b) \ge \min\{\mu(a), \mu(b), \text{for all } a, b \in \mu_t^{\ge}(a)$.

(ii)Let if possible, for some $a_0 \in \mu_t^{\geq} \mu(a\alpha x - (a\alpha(b-x)) < \mu(a_0))$, for all $a, b \in N$, $\alpha \in \Gamma$ and ,then by taking $t_0 = (1/2) \{ \mu(a\alpha x_0 - a\alpha(b - x_0)) + \mu(x_0) \}$,

we have $\mu(a\alpha x_0 - a\alpha(b - x_0)) > t_0$, for $\mu(a_0) \ge t_0$, $\mu(b_0) \ge t_0$. Thus $a\alpha x_0 - a\alpha(b - x_0) \notin \mu_t^{\ge}$, for some $x_0 \in \mu_t^{\ge}$ and for all $a, b \in N$. This is a contradiction, and so $\mu(a\alpha x - a\alpha(b - x)) \ge \mu(x)$, for all $x \in \mu_t^{\ge}$ and $a, b \in N$.

(iii) Let if possible, $\mu(a_0\alpha b_0) < \mu(a_0)$, for some $a_0, b_0 \in \mu_t^{\geq}$, then by taking

 $t_0 = (1/2) \{ \mu(a_0 \alpha b_0) + \mu(a_0) \},\$

FUZZY IDEALS IN **F-NEAR-SUBTRACTION SEMIGROUPS**

we have $\mu(a_0\alpha b_0) > t_0$, for $\mu(a_0) \ge t_0$, $\mu(b_0) \ge t_0$. Thus $a_0\alpha b_0 \notin \mu_t^{\ge}$, for some $a_0, b_0 \in \mu_t^{\ge}$. This is a contradiction, and so $\mu(a\alpha b) \ge \mu(a)$, for all $a, b \in \mu_t^{\ge}$. Hence μ_t^{\ge} is a fuzzy ideal of N. **Definition 3.7:** Let N be a Γ -near-subtraction semigroup and a_family of fuzzy sets { $\mu_i \mid i \in \mathbb{Z}$ } in N. Then the intersection $\bigcap_{i=1}^{n} \mu_i$ of $\{\mu_i \mid i \in \mathbb{Z}\}$ is defined by $\bigcap_{i=1}^{n} \mu_i(\mathbf{a}) = \inf \{ \mu_i(\mathbf{a}) | \mathbf{a} \in \mathbf{N}, \}$ **Theorem 3.8:** If $\{\mu_i | i \in I\}$ is a family of fuzzy ideal of N, then $\bigcap_{i=1}^n \mu_i(a)$ is a fuzzy ideal of N. **Proof:** Let $\{\mu_i | i \in I\}$ be a family of fuzzy ideal of N. (i)For all $a, b \in N$, we have $(\bigcap_{i=1}^{n}) \mu_i(a - b) = \inf \{\mu_i(a - b) | i \in I\}$ $\geq \inf \{ \min (\mu_i(a), \mu_i(b)) \mid i \in I \}$ $= min \{ inf (\mu_i(a) | i \in I) , inf (\mu_i(b) | i \in I) \}$ $= \min\{ \bigcap_{i=1}^{n} \mu_i(a), \bigcap_{i=1}^{n} \mu_i(b) \}$ (ii) For all a, b, $x \in X$, we have $(\bigcap_{i=1}^{n} \mu_i)(a\alpha x - a\alpha(b - x))$ $= \inf \{ \mu_i(a\alpha x - a\alpha(b - x)) | i \in I \}$ $\geq \inf \{ \mu_i(x) | i \in I \}$ $= \{ \inf (\mu_i(x) | i \in I) \}$ $= (\bigcap_{i=1}^{n}) \mu_i(\mathbf{x}).$ (iii) For all $a, b \in N$, we have $(\bigcap_{i=1}^{n}) \mu_i(a\alpha b)$ $= \inf \{ \mu_i(a\alpha b) | i \in I \}$ $\geq \inf \{\min (\mu_i(a)) \mid i \in I\}$ $= (\bigcap_{i=1}^{n}) \mu_i(a)$ Hence $(\bigcap_{i=1}^{n}) \mu_i(a)$ is a fuzzy ideal of N. **Definition 3.9:** Let $f: N \to N'$ be a mapping ,where N and N' are non-empty sets and μ is a fuzzy subset of N. The preimage of μ under f written μ^{f} , is a fuzzy subset of N defined by $\mu^{f} = \mu(f(a))$, for all $a \in N$. **Theorem 3.10:** Let $f: N \to N'$ be a homomorphism of Γ -near-subtraction semigroups. If μ is a fuzzy ideal of N, then μ^f is a fuzzy ideal of N. **Proof:** Suppose μ is a fuzzy ideal of N, then (i) For all $a, b \in N$, we have $\mu^{f}(a-b) = \mu(f(a-b))$ $= \mu(f(a) - f(b))$ $\geq \min\{\mu(f(a)), \mu(f(b))\}$ $= \min\{\mu^{f}(a), \mu^{f}(b)\}.$ (ii) For all a, b, $x \in N$, we have $\mu^{f}(a\alpha x - a\alpha(b - x)) = \mu (f(a\alpha x - a\alpha(b - x)))$ $= \mu(f(a\alpha x) - f(a\alpha(b - x)))$ $= \mu(f(a)\alpha f(x) - f(a)\alpha(f(b) - f(x)))$ $\geq \mu(f(x))$ $= \mu^{t} (\mathbf{x}).$ (iii)For all a, $b \in N$, we have $\mu^{f}(a\alpha b) = \mu(f(a\alpha b))$ $= \mu(f(a)\alpha f(b))$ $\geq \mu$ (f(a)) $=\mu^{f}(y).$ Hence μ^{f} is a fuzzy ideal of N. **Theorem 3.11:** Let $f: N \to N'$ be a homomorphism of Γ -near-subtraction semigroup. If μ^{f} is a fuzzy ideal of N, then μ is fuzzy ideal of N'. **Proof:** Suppose μ is a fuzzy ideal of X, then (i) Let a', b' \in N', there exists a, b \in N such that f(a) = a' and f(b) = b', we have $\mu(a' - b') = \mu(f(a) - f(b)) = \mu(f(a - b)) = \mu^{f}(a - b) \ge \min \{ \mu^{f}(a), \mu^{f}(b) \} = \min \{ \mu(f(a)), \mu(f(b)) \} = \min \{ \mu(a'), \mu(f(b)) \} = \min \{ \mu(f(a) - b) \} = \min$ $\mu(b')$. (ii)Let a', b', $x' \in N$, there exists a, b, $x \in N$ such that f(a) = a', f(b) = b' and f(x) = x', we have $\mu(a'\alpha x' - b\alpha(a' - x')) = b'$ $\mu(f(a)\alpha f(x) - f(b)\alpha(f(a) - f(x))) = \mu(f(a\alpha x) - f(b)\alpha f(a - x)) = \mu(f(a\alpha x) - f(b\alpha(a - x))) = \mu(f(a\alpha x - b\alpha(a - x))) = \mu^{f}(a\alpha x - b\alpha(a - x)) =$ $b\alpha(a - x)) \ge \mu^{f}(x) = \mu(f(x)) = \mu(x')$. (iii)Let a', b' \in N', there exists a, b \in N such that f(a) = a' and f(b) = b', we have $\mu(a'\alpha b') = \mu(f(a)\alpha f(b)) = \mu(f(a\alpha b)) = \mu^{f}(a\alpha b) \ge \mu^{f}(a) = \mu(f(a)) = \mu(a')$. Hence μ is a fuzzy ideal of N'. **Definition 3.12:** Let f be a mapping defined on N. If v is a fuzzy subset in f(N), then the fuzzy subset $\mu = v \circ f$ in N(i.e., the fuzzy subset defined by $\mu(a) = v(f(a))$ for all $a \in N$ is called the preimage of v under f.

Proposition 3.13: An onto homomorphic preimage of a fuzzy ideal of N is a fuzzy ideal.

FUZZY IDEALS IN **F-NEAR-SUBTRACTION SEMIGROUPS**

Proof: Straight forward. Let μ be a fuzzy subset in N and f be a mapping defined on N. Then the fuzzy subset μ f in f(X) defined by μ ^f (y) = $\sup_{a \in f^{-1}(b)} \mu(a)$ for all $b \in f(N)$ is called the image of μ under f. A fuzzy subset μ in N is said to have an sup property if for every subset $M \subseteq N$, there exists $n_0 \in M$ such that $\mu(n_0) = \sup_{n \in M} \mu(n)$.

Proposition 3.14: An onto homomorphic image of a fuzzy ideal with sup property is fuzzy ideal.

Proof: Let $f: N \to N'$ be an onto homomorphism of Γ -near subtraction semigroup and let μ be a fuzzy ideal of N with the sup property.

(i) Given a', b' \in N', we let $a_0 \in f^{-1}(a')$ and $b_0 \in f^{-1}(b')$ be such that $\mu(a_0) = \sup_{n \in f^{-1}(a')} \mu(n) \sup_{n \in f^{-1}(b')} \mu(n) \lim_{n \in$

respectively. Then, we have $\mu^{f}(a^{\prime}-b^{\prime}) = \sup_{m \in f^{-1}(a^{\prime})} \mu(m) \ge \min \{\mu(a_{0}), \mu(b_{0})\} = \min \{\sup_{n \in f^{-1}(a^{\prime})} \mu(n), \sup_{n \in f^{-1}(b^{\prime})} \mu(n)\}$

 $= \min \{ \mu^{f}(a'), \mu^{f}(b') \}$

(ii) Given a', b', $x' \in N'$, we let $a_0 \in f^{-1}(a')$, $b_0 \in f^{-1}(b')$, $x_0 \in f^{-1}(x')$ be such that $\mu^f(a'\alpha x' - a'\alpha(b' - x')) = m \in f^{-1}(a'\alpha x' - a'\alpha(b' - x'))$ $\mu(m)$

 $\geq \mu(a_0) \\ = \sup_{m \in f^{-1}(a')} \mu(m)$

$$= \mu^{r} (a').$$

(iii)Given a', b' \in N', we let $a_0 \in f^{-1}(a')$ and $b_0 \in f^{-1}(b')$ be such that

 $\mu(a_0) = \sup_{m \in f^{-1}(a')} \mu(m), \quad \sup_{m \in f^{-1}(b')} \mu(m)$ respectively. Then, we have

 $\sup_{f=1}^{sup} \mu(m)$ $\mu^{t}(a'\alpha b') =$

$$\sum_{\substack{m \in f^{-1}(\mathbf{a}'\alpha \mathbf{b}') \\ \geq \mu(\mathbf{a}_0) \\ m \in f^{-1}(\mathbf{a}') } \mu(\mathbf{m})$$

 $= \mu^{T} (a').$ Hence, μ^{f} is a fuzzy ideal of N'.

REFERENCES

1. S. J. Alandkar, A note on Γ-Near-Subtraction Semigroup (Communicated), Volume - 6 | Issue - 1 | July - 2016

2. J.C. Abbott, *Sets,Lattices and Boolean Algebra* Ally and Bacon,Boston 1969.

2. P.Dheena and G.Satheesh Kumar, On strong regular near-subtraction semigroups Commun. Korean Math.Soc.22 (2007), pp. 323-330.

3. Y. B.Jun, H. S.Kim and E.H.Roh, Ideal theory of subtraction algebras Sci. Math. Jpn. 61 (2005), pp. 459-464. 4. Y. B.Jun and H. S.Kim, On ideals in

12. L.A Z subtraction algebras, Sci. Math. Jpn. 65 (2007), pp. 129-134.

5. H. V.Kumbhojkar and M. S. Bapat, Correspondence Result for fuzzy ideals, Fuzzy Sets and Systems 41(1991) 213-219.

6. K.J. Lee and C.H.Park, Some questions on fuzzifications of ideals in subtraction algebras, Commun. Korean Math.Soc.22 (2007), pp. 359-363.

7.Y.S.Pawar and V.B.Pandharpure, Ideals and Bi-ideals in near-rings.Bull.Cal.Math.Soc.27 (2004), (4-6), 5-12.

8. G.Pilz, Near-ring, North-Holland, Amsterdam (1983).

9. Bh. Satvanarayan, A Note on Γ -Near-Ring, Indian Journal of Mathematics, B. N. Prasad Birth Centenary Commemoration Volume, vol.41, No. 3.(1990) .427-433.

10. M.Schein, Difference Semigroups, Comm. Algebra 20 (1992), pp. 2153-2169.

11.D. R. Prince Williams, Fuzzy Ideals in Near-subtraction Semigroups, World Academy of Science, Engineering and Technology International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering Vol:2, No:7, 2008, p 458-465

12. L. A. Zadeh, Fuzzy sets, Information Control 8 (1965), pp. 338-353.

13. L.A Zelinka, Subtraction semigroup, Math. Bohemica 120 (1995), pp. 445-447.

Dr. Alandkar Sanjay Jaykumar

Head and Associate Professor, Department of Mathematics and Statistics. Walchand College of Arts and Science, Solapur [M.S.]